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Helicon waves in non-resistive cylindrical and 
spherical plasmas 

J. L. A. FRANCEY and D. J. GATES? 
Department of Physics, Monash University, Victoria, Australia 
MS. received 22nd April 1968 

Abstract. A theoretical discussion of helicon wave propagation in non-resistive 
plasmas is presented. The  boundary conditions are derived and applied in cylindrical 
geometry to give results consistent with experiment. The problem is more compli- 
cated in spherical geometry because of the non-separability of the wave equation. 
However, by separating in cylindrical coordinates and rearranging in a series of 
spherical waves, solutions are obtained in the form of an infinite set of integral 
equations. Approximate solutions are obtained and the first few natural frequencies 
are identified. Wave fields for the principal mode are calculated and displayed 
graphically. 

1. Introduction 
A helicon wave is a low-frequency magnetic disturbance which propagates in a highly 

conducting medium, such as a metal at very low temperatures or in a gas discharge plasma, 
when a strong magnetic field is applied. The  macroscopic theory of such waves has been 
studied by Aigrain (1961), Bowers et al. (1961), Legendy (1964) and others. The cylindrical 
plasma has been treated very thoroughly by Klozenberg et al. (1965). 

It has been suggested by Aigrain (1964) that the spherical plasma would be most 
convenient for studying interactions of helicon waves with other waves, such as acoustic 
waves, in solid state plasmas. This is because the sample may be rotated so that the applied 
magnetic field makes different angles with the various crystal planes without altering the 
boundary conditions on the sample. The alternative of using a new sample for the study 
of each crystal plane presents the practical difficulty of making consistent samples. 

In  this paper the plasma is assumed to have zero resistivity. This requires the intro- 
duction of a new set of boundary conditions which are first applied to a cylindrical plasma 
for verification. The dispersion relation which results differs slightly from that of Klozen- 
berg et al. (1965) but agrees well with experiment. 

For the non-resistive spherical plasma, the equation 

B .  VV x b = iab 

where B is the applied uniform magnetic field, b is a magnetic-field perturbation and a is a 
real positive constant, must be solved in spherical coordinates and the solution matched 
with an external magnetic field for which V x b = 0. For problems which have been 
solved previously it is possible to assume solutions of the form 

(1.1) 

b = b’(x, y )  exp{i(kx -ut)> 

that is a wave propagating without change of shape along the direction of the field B = Bi. 
This assumption may not be made here and it is not obvious that (1.1) has wave-like 
solutions in a sphere. In  the paper it is shown that solutions exist which resemble an 
infinite series of superimposed spherical waves. The resonance condition consists of an 
infinite set of simultaneous equations which do not appear to belong to any known classifica- 
tion. An approximate solution is obtained which yields a set of resonant frequencies and 
the corresponding fields. 

t Now at Department of Mathematics, Imperial College, London. 
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2. The basic assumptions and equations 
The macroscopic theory of helicon waves may be based on the equation 

1 
N e  

E - - j x  B, = q j  

where E is the total electric field, BT is the total magnetic field, j is the current density, 
iV is the electron number density and q is the electrical resistivity. The  quantity - ljNe is 
the Hall coefficient. Equation (2.1) can be derived from the modified Ohm's law (Klozenberg 
et al. 1965) under the following assumptions: 

(i) The plasma is cool, so that electron pressure can be neglected. 
(ii) Ion motion is negligible. 
(iii) The plasma is collision dominated, that is the collision frequency is much greater 

Suppose the current j  and the electric field E arise from a perturbation b(r, t )  in a large 
than the frequency of the waves under consideration, thus djjdt does not appear in (2.1). 

steady uniform magnetic field B, so that 

BT(r, t )  = B + b(r ,  t )  (2-2) 
where IBI $ Ib/. Inserting (2.2) in (2.1) and linearizing gives 

1 
Ne 

E - - j x  B = q j  

which is to be solved in conjunction with Maxwell's equations for the perturbed quantities : 

V . b = O  (2.6) 
where the further assumption, (iv) that displacement current SO/ at is negligible, has been 
made. That is 

It will be shown below (see (3.4)) that, for a highly conducting plasma, (2.3) reduces to 

Thus for a disturbance of frequency w (2.7) implies that 

1 
WID1 < - / E [ .  

?1 
Hence 

1 
w < -. 

rl"0 

For a sodium plasma at ~ O K ,  l /vco N 

clear that this condition always holds in the limit of zero resistivity. 

for the field b in the plasma: 

so that the condition certainly holds. It is 

From (2.3), (2.4) and (2.5) there results, in the limit q + O ,  the basic wave equation 

ab 1 -+- B . V V x b = O .  
at Nepo 
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3. Boundary conditions 
The boundary conditions in the zero-resistance limit are deduced from the equations 

of finite conductivity (2.3) to (2.6). Integrating (2.4) across the plasma-vacuum interface 
gives for the jump [b]  in b on crossing the boundary 

n x [b] = poK (3.1) 
where n is the unit normal to the boundary and K is the surface current density. 

Kow K = lim hj as h +- 0, where h is a coordinate normal to the surface. For finite 
conductivity (2.3) shows that j is finite and hence K = 0. If the conductivity is allowed 
to become infinite, t hen j  may be infinite and K non-zero as follows. Solving (2.3) for j gives 

where ( is the dimensionless quantity NeqlB. Suppose that [ 1, then 

B 
774- 

_\-e 
and 

j z - B ( B .  E ) .  
17 

(3-3) 

(3.4) 

( In  sodium at 4 OK, f N 0.02.) At the plasma surface the current has a tangential component 

1 A  A 

j T  = - ( B  . E ) ( B  . t ) t  
?1 

where t is the unit tangent vector in the plane containing n and B. Now suppose that l / y  
becomes infinite in such a way that the ‘surface conductivity’ X = h/q remains finite. Then 

K = limlzj, 
h +O 

h 

it 3 0  rl 
= lim - (5 . ~ ) ( h  . t) t  

= ( X h . E f i . t ) t .  
From (3.1) 

and from (2.6) 
n x [b] = p . ~ ( h  . ~ ) ( h  . t>t 

n , [b] = 0. 
Expressions (3.5) and (3.6) are the boundary conditions for the field b. However, only 
two boundary conditions are required to solve the boundary value problem, and these 
can be chosen to be independent of the surface current since, from (3.5), 

then 

and 

t x (n x [ b ] )  = 0 

n . [b] = 0 (3.7) 

An alternative expression of these conditions is 

( n x 2 ) x  [b] = 0. (3 4 
The boundary conditions for helicons have been the subject of some controversy 

(Legendy 1964, p. A1716). Formula (3.7) is a new set of boundary conditions, the conse- 
quences of which are compared with some established results in the next section. 
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The surface current mentioned above is not of great physical interest since it would 
be difficult to measure, in sodium f y  example. However, for a cylindrical boundary which 
is parallel to B at every point t = B. Therefore 

K = X ( 6 .  E $ .  

But from (2.3) E = (1jiVe)jxB when 7 = 0. Therefore K = 0 at every point of the 
boundary. 

4. Helicon waves in a non-resistive cylindrical plasma 

reduces to 
If we choose the x coordinate to be parallel to the uniform field B,  equation (2.5) 

(4.1) 

A 

b(p, x, t )  = b(p) exp(i(kx -ut)} 
are sought. This gives 

V x b = E b  

where E = oNepo/Bk and V . b  = 0 gives 

TJ2b = E 2 b .  (4 *4) 
The solutions for the cylindrical components are 

6, = AJo(YP) 
where Jo is the Bessel function of order zero and 

y2 = ~2 -k2 

ikA b o =  --J(  1 YP) 
' I I  

and 
I 

Outside the cylinder there is no current, so that b = TJ#, where # is a scalar and v2+ = 0. The  appropriate solution having the form of (4.2) is 9 = CKo(Kp), where KO 
is the modified Bessel function of order zero and C is a constant. The external component 
solutions are then 

6, = CkK,(kp) 
6, = ikCKo(kp) 
6, = 0. 

The  boundary conditions (3.7) imply here that b, and b,  are continuous at the surface 
p = po  of the cylinder. Therefore 

and 
, 

AJO(YP0) = ikCKo(kP0). 
These are linear equations in A and C, and for consistency 

(4.5) 
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Equation (4.5) shows that w is a real multi-valued function of k. That is, w, = f,(k) for 
n = 1, 2, ... . These functions define a set of modes and their dispersion relations, The  
functions (4.5) have been computed and shown to compare well with experimental measure- 
ments on sodium and indium (Hui 1966). 

The dispersion relation (4.5) differs from that of Klozenberg et al. (1965, equation (3.2)) 
by the purely imaginary term ia, where 

N e w "  Po 
a = -  = --. 

Bk k7 

This term diminishes with decreasing wavelength since t( -+ 0 as k + E .  
The discontinuity in 6, given here as 

is the same as that obtained by Klozenberg et al. (1965, equation (4.2)). A discontinuity 
in 6, in the limit 7 -+O, representing a non-zero surface current, which is obtained by 
Klozenberg does not appear in the present approximation. 

5. Solutions in a spherical plasma 

which the wave equation is 
Monochromatic axially symmetric solutions b(r, t) = b'(r) exp(iwt) are sought for 

where C2 = wNepo/B, and B = B2. T o  satisfy boundary conditions on a sphere, (5.1) 
has to be solved in spherical coordinates. The normal straightforward procedure yields a 
fourth-order partial differential equation for one of the spherical components of b. This 
equation does not appear to separate nor does it seem to be susceptible to any standard 
method of solution. 

We now show that it is possible to find an integral representation of the spherical 
solutions in terms of the solution in cylindrical coordinates (p, 4, 2). The cylindrical 

a ab, ab, 
ax ax 

iC2b, = - (- - 

From these a separable equation is obtained for b, with the solution 

where 
b, = J,(Ap){A exp(ihx) + B exp( -ihx) + C exp(px) + D exp( -42)) (5 4 

1 1 

and 
C4 -h4 

A2 = -. 
h2 

A simple product solution such as this will only satisfy boundary conditions on a cylindrical 
boundary. T o  satisfy spherical boundary conditions, the general solution, which is a sum 
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or integral over all allowed values of h and q, is needed. The  required solutions, which in 
addition are wave-like, are 

C 

b, = 1 dh A(h) exp(ihz)J,(Xp) ( 5 . 3 )  
- C  

where A(h) is an arbitrary function of h. 

using an identity found in the work of Stratton (1941, p. 413), so that we have with 
This result may be expressed in a form which separates the Y and 6' dependence by 

p = Y cos 8, x = Y sin 6' 
X ( n - l ) !  i dhA(h)P,'" (:) j, (;r) P,l(cos 6')  (5.4) 

b, = 2 in-1(2n+1)-- 
n = l  ( n + l ) !  -c  

where the Pnm are associated Legendre functions and the j, are spherical Bessel functions. 
By using (5.1) in spherical polar coordinates we obtain 

( 5 . 5 )  
h 
c2 

m C 
in-I(2n.+ 1) (f 1 dh A(h) -Pnl (:) j, ('j,z.) P,l(cos 8)) b,= 2 

n = l  - c  

dhA(h)-P,l h ( g ) ( n j ,  (FY) -T-j,.-l C2r (::r))] X 
and 

be = 2 i"-1(2n+1)-- 
n = 1  c2 

x P,l(COS 8). (5.6) 

Outside the spherical plasma we have V' x b = 0, and setting b = Vt,b we have V2$ = 0, 
so that the spherical components of b are 

b y =  - C B (  , n + l )~ - ( ,  + 2)P,(cos B )  
n 

b, = - 2 Bnr-(n+2)P,1(Cos e)  
n 

b, = 0. 

(5.7) 

(5.8) 

The  boundary conditions are that b, and bo are continuous at the surface Y = a of the 
sphere. These two conditions are sufficient to determine the arbitrary constants B, and 
the arbitrary function A(h). Equating coefficients of P,(cos 6') in ( 5 . 5 )  and (5.7) at r = a 
we obtain 

(1 h C2a 
in- l (2n+ 1) 1; f dh A(h) CzPnl (:) j, = -B,(n+ 

-c 
(5.9) 

while (5.6) and (5.8) give 

h C2a C2a 
i n - l Z S 1  [ir dhA(h)-P,1 (g) (nj, 

The requirement of consistency between (5.9) and (5.iO) gives 

--jn-l (;!))] = -B,a-(n+2). 
n (n+l )  a -c  C2 h 

(5.10) 

1' dxf(x)P,1(x2)jn-1 (i) = 0 
-1 

(5.11) 

where x = h / C , f ( x )  = CA(Cx) ,  y = Ca and n has the values 1, 2, 3, ..., CO. The set of 
constants yi and the corresponding functions f i ( x ) ,  if they exist, define a set of resonant 
frequencies wi  = woyi2  and corresponding wave fields b,. 

Unfortunately, it has not been possible to solve (5.11) nor to establish whether, and 
under what conditions, solutions of the required form exist. T o  proceed, we assume that 
solutions exist, and in the next section solutions are obtained after an approximation has 
been made. 
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6. Approximate solutions 
Equation (5.11) is in fact a set of simultaneous equations since the boundary conditions 

must be satisfied simultaneously for all values of n. Each term of the series (5.5) and (5.6) 
is not separately a solution of the helicon wave equation, although each term of the series 
(5.7) and (5 .8)  is separately a solution of Laplace's equation. This is in contrast with the 
problem of resonance of electromagnetic waves in a dielectric sphere (Stratton 1941, p. 554), 
where it is possible to equate a single term of the internal series with a term of the external 
series, while setting the arbitrary constants (the B,) in the other terms equal to zero. Here 
the B, can be determined only after (5.11) has been solved. 

The limits of integration in (5.11) may be changed taO, 1 using the symmetry property 
j,( -2) = ( -  l)"j,(x). We observe that the major contribution to the integral by the 
function j,(y/x) comes from the region near x = 1, which suggests a series expansion about 
this point. As a first approximation we replace j,(y,'x) by its value j,(y) at x = 1. This is 
apparently a drastic assumption, but we have calculated improved solutions using a 
perturbation method (see appendix) and found an error of about 20:/, in the first approxima- 
tion to the eigenfrequencies. We now have in place of (5.11) a set of integrals of the form 

1 

j2n-l(y) J d x p ~ , ( X ~ ( x )  -f( -XI) = 0 

jzn-Z(y) d x ~ ~ - 1 ( X 2 ) ~ ( X ) + f (  -XU = 0 

0 

1 

0 

may be solved exactly for the solutions f ( x )  = &kxPi,(x2), corresponding to 
3' = xzk- l ,s ,  whenf(x) is an even function, andf(x) = -i&-1[xIPik-1(x2), corresponding 
to y = x ~ ~ - ~ , ~ ,  whenf(x) is odd. Here the x, are zeros of j,(y) and the D, are arbitrary 
constants. These solutions enable the external and internal fields to be calculated. 

The natural (resonant) frequencies w , , ~  are given by 

where w o  ,= B/Nepoa2  and X,,s are zeros of jnd1(y). Values of w/wo have been calculated 
and are given in table 1 for n = 1 to 5 and s = 1 to 5 .  

Table 1 
1 2 3 4 5 

9.9 20.2 33.1 48.9 66.9 
x 

1 
2 39.4 59.8 82.9 109 137 
3 89 119 152 188 226 
4 158 198 241 286 335 
5 247 297 349 405 464 

The wave fields have been calculated for the mode of lowest frequency, and these are 
given approximately by 

!J@,~ (internal) = D,(O-625j2P,1 + 0.188j4P41 + 0.102j,P,1) 

br,l (internal) = - - (o*359j1P1 --o.57Oj3P3 -0*249j,P,) 

bo,l (internal) = -iDl - (O*18Oj,Pl1 -o*143j3P31 -0*42j5P5) -jOPl1 

!J@,l (external) = 0 
bT,l (external) = -iD,(O.l I ~ u - ~ P ,  - 0 . 0 9 5 ~ - ~ P ,  - -0 .005~-~P, )  
bo,1 (external) = - iD, (O.057~-~P,~  - 0 . 0 2 3 ~ - ~ P , ~  -O.O008~-~P,l). 

Here U = r/a,  the j, have the argument TU and the P, have the argument cos 0. 

D, i 
$1 

i t 
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These functions of U and 0 have been plotted in a number of ways to display the field 
configuration. By calculating the components bT,l and bo,: at a number of points in an 
axial plane we obtain a rough plot of the field lines. This is shown as figure 1. It can be 

Figure 1. Approximate field line configuration in the sphere. 

\ i  

U 
* 

Figure 2. Field on the axis of the sphere as a function of U = rja. 

t 
\ 1 

I 
-h 

Figure 3. Field in the equatorial plane as a function of U ,  

seen that the field resembles that of a circular current loop in an equatorial plane with 
radius approximately that of the spherical plasma. 

On the axis of the sphere 0 = 0, so that P,1(1) = 0 and P,(1) = 1. This gives 
bm,l = bo,l = 0. Figure 2 shows b7,1 as a function of U for this case. 
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On the equatorial plane 0 = &T, so that cos 0 = 0, P,’(O) = 0 ,  giving bd,l = 0. Like- 
wise P2n-1(0) = 0, so that br,l = 0. Figure 3 is a plot of bo,l  as a function of U for this case. 

On the surface zi = 1, and here we plot all three components as functions of 6. This is 
figure 4. 

Figure 4. Field at the surface of the sphere. 

7. Discussion 
The preceding theory predicts the existence of natural modes of oscillation of helicon 

waves in a spherical plasma. The  frequencies of the lower modes have been calculated, 
and it should be possible to excite these experimentally and so measure their frequencies. 

The  boundary conditions have been deduced from first principles and appear to con- 
form to experimental measurements in a cylindrical plasma, so that they may be used in 
any bounded conductor of sufficiently low resistivity. 

The  wave fields resemble an infinite series of superimposed spherical waves of different 
wavelength. The types of mode and their degeneracy are similar to those obtained for 
oscillations of electromagnetic waves on a dielectric sphere. Solutions having axial sym- 
metry have been considered here, but the theory can be extended to deal with axial depen- 
dence. These solutions are entirely degenerate, however ; they merely add more modes of 
the same frequency. 

The problem has a number of interesting mathematical features. The helicon wave 
equation in a sphere separates in cylindrical coordinates but not in spherical coordinates. 
This may be related to the fact that the wave equation is invariant under rotation about B 
but not about any other direction. The  conventional wave equation is spherically symmetric 
and separable in both coordinate systems. 

The  method of obtaining solutions has relied on a number of special relations between 
the coordinate systems and the corresponding solutions. 

The coordinate systems have the component b, in common. The  solution (5.3) for b, 
has the same form as a conventional cylindrical wave, apart from the dependence of h on h. 

There is an ‘ordinary series’ relating the separable cylindrical solutions exp(ihx) J1( hp) 
to the separable spherical solutions j,(Kr)P,l(cos 6) of the conventional wave equation. 

Each term of the series (5.4), (5.5) and (5 .6)  has the same dependence on 6 as a term of 
the corresponding external solutions. This has enabled us to equate coefficients of the 6 
terms at the boundary and so render the resonance condition (5.11) 8 independent. 

The  equation (5.11) appears to be a new type of eigenequation, whose solution has yet 
to be obtained in a rigorous way. 
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Appendix. Estimate of error 

that 
The  results for the resonance problem presented in 6 are based on the assumption 

where F(x)  is a smooth function compared with j,(y/x). This is a drastic assumption which, 
however, makes the problem soluble and may provide starting values for a numerical 
attack on the problem. (We do not assume that j,(y/x) N j,(y) for all x in the interval 0 to 1.) 

Figure 5 .  

Let us consider the behaviour of the functions j,(y/x) in the range (0 to 1). For example 

The  functions j,(y/x) oscillate with infinite frequency as x -+ 0. The  integral 

where g(x) is a comparatively smooth function, oscillates in a similar manner, so that 
values of x near zero contribute little to the integral. The  value of the integral is determined 
for the most part by the behaviour of j,(y/x) near x = 1. This suggests the approximation 
(Al), in which j,(y) is the first term of a Taylor expansion of j,(y/x) about x = 1. 

It is possible to obtain an estimate of the error by the arguments which follow, but even 
here small values of x in the integrand of (Al) are to be excluded. 

VC7e have obtained approximate solutions fno(x) and of the simultaneous equations 

where 

Substitution of any one of the approximate solutions in (A2) yields a set of non-zero con- 
stants on the left which are to be compared with zero on the right. This is a meaningless 
exercise; the method of substitution fails. 

However, the error in the approximate solutions can be estimated. In  particular, for 
the principal mode we have 

fio(x) = Jx/P11(x2) and yl0 = T .  

We seek improved solutions of the form 

fl(.> = fl"(.> + alEl(x) 
Y1 = YlO+% 

IPll 4 / Y l O / .  
where 



1 

6, / dx G,(x)El(x) = -AfL -6,B, 
-1 

with 
G,(x) = g,(x,yl0), a function of x alone; 

1 

A ,  = / dxg,(x,ylO)flO(x), 

B ,  = / d ~ g , , ~ ( x ,  yl0)flo(x), 

a constant; 
-1 

1 
and 

a constant. 
-1 

We consider the expansion 

g,(x, Y l O )  = gnO(x, Y l O )  + 61h,(x, Y l O )  (A4 ) 
where g,O(x, yl0) is our approximation to g, resulting from the assumption (Al). That is 

with 

and 
x(x) = Pn1(x2), n odd 

= -Pn1(x2), 

= P,1(x2), 

n even and -1 < x 6 0 
n even and 0 6 x < 1. 

The xn(x) are orthogonal with respect to the density function x and 
1 / dxXn(x)Xm(x)x = 0 ,  n # m 
-1 

m(m + 1) 
2m+1 

, n = m  - ___._ - 

but Ll(ylo) = 0, so that glo(x, yl0) = 0. The correction term 6,hl is just g,, so that the 
expansion (A4) is not permissible for n = 1. We retain it for n > 1. Equations (A3) are 
now 

1 

6, f dx G,(x)E,(x) = -Al -6,B1 

6,L,(yl0) f dxXn(x)El(x) = -A, -6,B,, 

(A51 

(A6) 

-1 

1 
and 

n = 2 ... a. 
-1 

The second-order terms in Sl have been neglected. W-e now assume that El(x) can be 
expanded as 

m 

El(%) = 2 emfmo(x)* (A7) 
m = 2  
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Sincefmo(x) are orthogonal to xn(x), equations (A6) reduce to 

721 

so that 
(An +S,Bn)(Zn+ 1) 

8,L,n(n + 1) 
en = - 

and E,(x) is determined as a function of 6,. Equation (A6) can be used now to determine 6,. 
If we assume (A7) to converge rapidly, we obtain for E,(x), by taking only the first term 
in the series, 

This gives 

where 

and 

and 

A1 -D 
C -B1 

6, N -- 

1 

I = dxGl(x)fzo(x). 
- 1  

The integrals are calculated numerically and give the results 

A1 = -0.036, Bl =:0*0090, A, = -0.0031 
Bz = 0.061, I = 0.38, I,(yl0) = jl(n) = 0.318 

whence C = 0-060, D = -0.0031 and 6, = -0-65. This represents an error of about 
20% iny,". 

Now SIEl(x) = O*llfzo(x), giving an error of about 10% in the solutionf,"(x). 
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